Question Number	Acceptable Answers	Reject	Mark
1(a)	$(K_{a1} =) [H_3O^+(aq)][HS^-(aq)]$ $[H_2S(aq)]$	[H ₃ O ⁺] ² numerator	(2)
	(1)		
	$(K_{a2} =) \frac{[H_3O^+(aq)][S^{2-}(aq)]}{[HS^-(aq)]}$	[H₃O+]² numerator	
	Allow H ⁺ (aq) for H ₃ O ⁺ (aq) Ignore missing / incorrect state symbols (1)		

Question Number	Acceptable Answers		Reject	Mark
1(b)(i)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(1)		(2)
	M2: $(x = 9.4393 \times 10^{-5})$ $[HS^{-}] = 9.44 \times 10^{-5} / 0.0000944 \text{ (mol dm}^{-3})$ For M2, answer must be to 3 sf Correct answer without working scores (2)	(1)		

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	$([H^+] = (\sqrt{8.91} \times 10^{-9})$ =) 9.439 x 10 ⁻⁵ (mol dm ⁻³)) pH = (-log 9.439 x 10 ⁻⁵) = 4.0251/4.025 /4.03/4.0 TE on answer to (b)(i) provided pH <7	4/4.02	(1)

Question Number	Acceptable Answers	Reject	Mark
*1(b)(iii)	Any THREE from:		(3)
	Assumption 1		
	$[H_2S]_{equilibrium} = [H_2S]_{initial}$		
	OR The dissociation of H ₂ S is negligible		
	OR		
	0.0000944 is very small compared to the initial concentration of $H_2S/$ 0.100 (hence a valid assumption)		
	Assumption 2 $[H_3O^+] = [HS^-] / [H^+] = [HS^-]$ OR		
	Ignore any H^+ from (the dissociation of) water / H^+ only from H_2S		
	Assumption 3 Ignored ionization of HS $^-$ / HS $^-$ doesn't (significantly) dissociate further OR K_{a2} very much smaller than K_{a1}		
	Assumption 4 Measurements at 298 K / standard temperature IGNORE References to the concentration of water References just to "standard conditions"		

Question Number	Acceptable Answers	Reject	Mark
Number 1(c)(i)	M1: General shape of an acid-base curve with the pH increasing and either one or two steep / vertical sections shown NOTE Penalise a pH range for a single vertical with a range of eight or more pH units (as this is the typical range for a strong monobasic acid with a strong base titration curve) (1) M2: Vertical / steep section at 25 cm³ (1) M3: Vertical / steep section at 50 cm³ (1)		(5)
	M4: Either equivalence point labelled anywhere on vertical section or x-axis		
	(1) M5: Initial pH = 1.5 and a recognisable 'plateau' in the pH range of 12 to 13		
	PH Equivalence Points 25 50 75 100 Volume of sochium hydroxicle added/cm²		

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	The pH when 12.5 cm ³ of NaOH has been added OR the pH at "half-equivalence" (for the first equivalence point) ALLOW " pH at half neutralisation" Allow TE from an incorrect graph		(1)

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	$HC_2O_4^-(aq) + H_2O(I) = C_2O_4^{2-}(aq) + H_3O^+(aq)$ $(or \rightarrow)$ $ALLOW H_2O(aq)$ Equation (1) states (1) ALLOW for 1 mark $HC_2O_4^-(aq) = C_2O_4^{2-}(aq) + H^+(aq)$ States mark is not stand alone but can be awarded if the equation has a minor error e.g. an incorrect charge		2

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	$K_{\rm a} = [{\rm C_2O_4}^{2-}] [{\rm H_3O}^+] / [{\rm HC_2O_4}^-]$	K _a =	1
	OR	[H ⁺] ² / [HC ₂ O ₄ ⁻]	
	$K_a = [C_2O_4^{2-}] [H^+] / [HC_2O_4^-]$ No TE on incorrect equation in (a)(i) Penalise incorrect charges in (i) and (ii) once only	[H ⁺][A ⁻]/ [HA]	

Question Number	Acceptable Answers	Reject	Mark
2 (a) (i	No TE on (a)(ii) $K_a = 10^{-4.28} \text{ OR } 5.24807 \text{ x } 10^{-5} \text{ (mol dm}^{-3}\text{)} $ $K_a = [H^+]^2 / [HC_2O_4^-]$ $K_a = [H^+]^2 / 0.050$ $[H^+] = \sqrt{(0.05 \text{ x } 10^{-4.28})} = 1.61988 \text{ x} 10^{-3} \text{ (mol dm}^{-3}\text{)}$ (1)		3
	TE on incorrect K_a value		
	pH = $-\log 1.61988 \times 10^{-3} = 2.7905 = 2.8$ (1)		
	For final mark TE on algebraic / arithmetical errors providing pH ≥ 1.3		
	Correct answer with no working scores 3		
	Ignore SF except 1 SF		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	IGNORE explanations First mark:	Use of NaHC ₂ O ₄ for HC ₂ O ₄ ⁻ OR sodium hydrogen- ethanedioate for hydrogen- ethanedioate ion throughout this item	2
	Penalize omission of [] in discussion once only		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Ethanedioic acid is a (much) stronger acid (than hydrogenethanedioate ion / sodium hydrogenethanedioate) OR Ethanedioic acid has a (much) smaller pK_a (than hydrogenethanedioate) OR Ionization / dissociation of ethanedioic acid is (much) greater (than hydrogenethanedioate) OR	Ethanedioic acid is a strong acid / fully dissociated	2
	Reverse arguments IGNORE NaHC ₂ O ₄ ionization negligible Approximation of negligible ionization invalid / incorrect OR [H ₂ C ₂ O ₄] _{equilibrium} not equal to [H ₂ C ₂ O ₄] _{initial} No TE on 18(a)(iii) IGNORE Second ionization occurs	Just 'approximation invalid'	

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	Start pH at 2.8 ALLOW 2—4 (1)		3
	Vertical section at 25 cm ³ within pH range 6-11 and 2.5-4 units long (1	deviation from vertical	
	end pH (approaching) value in range 12-13 (asymptotically) (1	maximum before final pH	

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	F mark: Methyl yellow range = 2.9—4 and the phenolphthalein range = 8.2—10 ALLOW pK _{in} (methyl yellow) = 3.5 and pK _{in} (phenolphthalein) = 9.3 (1) Second mark: (The volumes are different) because ethanedioic acid is dibasic / diprotic / has two replaceable/acidic hydrogen atoms ALLOW dicarboxylic (acid) (therefore there are two stages to the neutralization) OR Methyl yellow range coincides with neutralization of first proton and phenolphthalein range coincides		2
	with neutralization of second proton (1)		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	$Ka = [CH_3CO_2^-] [H^+]/[CH_3CO_2H]$ OR $Ka = [CH_3CO_2^-] [H_3O^+]/[CH_3CO_2H]$ OR Use of $[CH_3COO^-]$ instead of $[CH_3CO_2^-]$ and $[CH_3COOH]$ instead of $[CH_3CO_2H]$ IGNORE state symbols even if wrong	Numerator as [H ⁺] ² Expressions in terms of HA alone Round/curved brackets '()' Any other carboxylic acid	1

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	1.7 x 10 ⁻⁵ = $[H^+]^2 / 0.5$ $[H^+] = \sqrt{1.7} \times 10^{-5} \times 0.5 / 2.915(476) \times 10^{-3}$ (1) pH = $(-\log[H^+]) = 2.53529$ OR = 2.54 OR = 2.5 (1)	4.77 or 4.8 from using pH = -log Ka loses both marks	2
	ALLOW TE for second mark from any hydrogen ion concentration as long as pH less than 7 Correct answer alone scores (2) ALLOW pH = 2.53 if [H ⁺] is rounded to 2.92×10^{-3} IGNORE sf except 1		

Acceptable Answers	Reject	Mark
20 (cm ³) IGNORE units		1
OR		
	20 (cm³) IGNORE units	20 (cm ³) IGNORE units OR

Question Number	Acceptable Answers		Reject	Mark
3(a)(iv)	Moles of excess NaOH = $10/1000 \text{ x}$ = 5×10^{-3}	0.50 (1)		4
	So [NaOH/OH ⁻] = 5 x 10^{-3} x $1000/5$ 0.10 mol dm ⁻³	0 = (1)		
	EITHER Kw route:			
	$[H^+] \times 0.1 = 1 \times 10^{-14}$	(1)		
	So pH = $-\log 1 \times 10^{-14} / 0.1 = 13$	(1)		
	OR pOH route:			
	pOH = 1 So pH = (14 - 1) = 13	(1) (1)		
	ALLOW TE throughout			
	Correct final answer scores (4)			

Question Number	Acceptable Answers	Reject	Mark
3(a)(v)	Starting at pH 2-3 AND finishing at pH between 12 and 13.7 inclusive (1)		3
	Vertical section at 20 cm ³ (1) S-shaped curve, with gradual rise and vertical section within the pH range 5.5 and 11.5 and of 3 to 5 units in length (1)		
	These are stand alone marks These are stand alone marks		

Question Number	Acceptable Answers		Reject	Mark
3 (b)(i)	EITHER			4
	[base] = Ka [acid]/[H ⁺] Or			
	$[H+] = (10^{-pH4.70}) = 1.995 \times 10^{-5}$	(1)		
	[base] = $1.7 \times 10^{-5} \times 1/(1.995 \times 10^{-5}) = 0.8$	52 (1)		
	moles base = 0.852 x 0.5 = 0.426 (mol)	(1)		
	mass base = 0.426 x 82 = 34.9 g	(1)		
	IGNORE sf except 1			
	Correct answer, with or without working (4))		
	OR			
	pH = pKa - log[acid]/[base]			
	4.70 = 4.8 - log [1/[base]]			
	Log[1/[base]] = 0.1	(1)		
	[base] = 0.794(328) (mol dm ⁻³)	(1)		
	So in 500 cm ³ Moles = $0.794 \times 0.5 = 0.397 \text{ mol}$	(1)		
	Mass = 0.397 x 82 = 32.554/32.6 g	(1)		
	(ALLOW using p $Ka = 4.77$)			

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	First mark Buffer has large amount/ excess/ reservoir of CH ₃ COOH (and CH ₃ COO ⁻) (1)		3
	Second mark OH ⁻ ions added react with CH ₃ COOH		
	OR $CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$		
	OR OH ⁻ + H ⁺ \rightarrow H ₂ O and CH ₃ COOH \rightarrow CH ₃ COO ⁻ + +		
	OR Equations described in words (1)		
	Third mark Ratio / values of [CH ₃ COOH] to [CH ₃ COO ⁻] remains (almost) unchanged (1)		
	IGNORE concentration of hydrogen ions remains constant		
	ALLOW answers in terms of HA and A		

Question	Acceptable Answers	Reject	Mark
Number			
4 (a)	$K_a = (10^{-10.64}) = 2.3 \times 10^{-11} / 2.2909 \times 10^{-11}$ (mol dm ⁻³)		1
	Ignore sf except 1		

Question Number	Acceptable Answers	Reject	Mark
4 (b)(i)	$K_a = \frac{[HCOO^-][H^+]}{[HCOOH]}$ OR written as HCO_2^- and HCO_2^- H OR with H_3O^+ instead of H^+	$K_a = \frac{[H^+]^2}{[HCOOH]}$ without also giving full expression	1
	Allow $K_{a} = \frac{A^{-}[H^{+}]}{[HA]}$ if formula of HA and A ⁻ given as HCOOH and HCOO ⁻	'	

Question Number	Acceptable Answers	Reject	Mark
Number 4 (b) (ii)	1.6 x $10^{-4} = \frac{[H^+]^2}{0.50}$ (1) $[H^+] = \sqrt{1.6} \times 10^{-4} \times 0.5$ (1) $(= \sqrt{8} \times 10^{-5} = 8.94 \times 10^{-3})$ pH = (2.048455) = 2.05 / 2.0 (1)	pH = 2 pH = 2.1	3
	Correct answer with no working (3) TE for third mark if $[H^+]$ calculated incorrectly No TE from incorrect K_a expression Ignore sf except 1		

Question Number	Acceptable Answers	Reject	Mark
4 (b)(iii)	All H ⁺ comes from acid / none from water / [H ⁺] = [HCOO ⁻] OR [H ⁺] = [A ⁻] OR Dissociation of acid is negligible / very small OR [HA] _{initial} = [HA] _{equilibrium}	K _a is measured at 298K Just "dissociation of acid is partial"	1

Question Number	Acceptable Answers	Reject	Mark
4 (c)(i)	HCOOH CH ₃ COOH ₂ ⁺		1
	both correct (1)		

Question	Acceptable Answers	Reject	Mark
Number			
4	$(HIO + CH_3COOH \Rightarrow) H_2IO^+ + CH_3 COO^- /$		1
(c)(ii)	, 11210 1 2113 2 2 2 1		
	(HIO + CH ₃ COOH ⇒) HIOH ⁺ + CH ₃ COO ⁻ Ignore position of positive charges		

Question Number	Acceptable Answers	Reject	Mark
4 (d)	$(pH = 4.9)$ so $[H^+] = (1.2589254 \times 10^{-5})$ = 1.259 x 10⁻⁵ (1)		2
	$(\underline{K_a} = \underline{[HCOO^-]}$ $[H^+]$ $[HCOOH]$		
	$= \frac{1.6 \times 10^{-4}}{1.259 \times 10^{-5}}$		
	= 12.7 (:1) / 13(:1) (HCOO per HCOOH or base:acid)		
	(12.709252 from unrounded [H ⁺] 12.708499 from [H ⁺] rounded to 1.259 x10 ⁻⁵ 12.3 from [H ⁺] rounded to 1.3 x10 ⁻⁵) TE from error in [H⁺]		
	Allow 800:63 (1)		
	Correct answer scores 2		
	Accept (0.0786828) = 0.079 HCOOH per HCOO ⁻ for acid:base ratio		
	(0.0786874) = 0.079 from rounded pH		
	OR $pK_a = -log K_a = 3.79$		
	3.79 = 4.9 - log [base] (1) [acid]		
	log [base] = 1.11 [acid]		
	[base] = (12.882496) = 12.9 (:1) (1) [acid]		
	Correct answer scores 2		
	Accept 0.0776/ 0.078 HCOOH per HCOOffor acid:base ratio (0.0776247)		
	TE from error in pK _a Ignore sf except 1		